Contents

Preface xiii

1 Oil-Field Casing ...1
 1.1 Introduction 1
 1.2 Setting the Standards 2
 1.3 Manufacture of Oil-Field Casing 2
 1.3.1 Seamless Casing 2
 1.3.2 Welded Casing 3
 1.3.3 Strength Treatment of Casing 5
 1.4 Casing Dimensions 6
 1.4.1 Outside Diameter 6
 1.4.2 Inside Diameter and Wall Thickness 7
 1.4.3 Joint Length 7
 1.4.4 Weights of Casing 8
 1.5 Casing Grades 9
 1.5.1 API Grades 10
 1.5.2 Non-API Grades 12
 1.6 Connections 12
 1.6.1 API 8-rd Connections 14
 1.6.2 Other Threaded and Coupled Connections 15
 1.6.3 Integral Connections 15
 1.7 Strengths of Casing 16
 1.8 Closure 17
 1.9 References 17

2 Basic Calculations and Hydrostatics19
 2.1 Introduction 19
 2.2 Units of Measure 21
2.2.1 Weight and Mass in Oil-Field Context 22
2.2.2 Standard Gravity 24
2.2.3 Fluid Density 25
2.2.4 Units in Formulas and Equations 25
2.2.5 Significant Figures, Rounding, and Computers 28
2.3 Fluid Statics 32
2.3.1 Hydrostatic Pressure 33
2.3.2 Buoyancy and Archimedes’ Principle 36
2.4 Oil-Field Calculations 46
2.4.1 Hydrostatic Pressures in Well Bores 47
2.4.2 Buoyed Weight of Casing 57
2.4.3 Buoyed Weight of Casing in Inclined and Curved Well Bores 65
2.4.4 The Ubiquitous Vacuum 75
2.5 Closure 75
2.6 References 76

3 Casing Depth and Size Determination ...77
3.1 Introduction 77
3.2 Casing Depth Determination 77
3.2.1 Depth Parameters 77
3.2.2 Conductor Casing Depth 89
3.2.3 Surface Casing Depth 91
3.2.4 Intermediate Casing Depth 91
3.2.5 Setting Depths Using Pore and Fracture Pressures 92
3.2.6 Casing Size Selection 96
3.2.7 Well Bore Size Selection 97
3.2.8 Bit Choices 100
3.2.9 Alternative Approaches 101
3.3 Closure 101
3.4 References 102

4 Casing Load Determination ..103
4.1 Introduction 103
4.2 Casing Loads 103
4.3 Collapse Loading 105
4.4 Burst Loading 106
4.5 Surface Casing 108
4.5.1 Surface Casing Collapse Loads 108
4.5.2 Surface Casing Burst Loads 109
4.5.3 Surface Casing Load Curves 110
4.6 Intermediate Casing 113
4.6.1 Intermediate Casing Collapse Loads 113
5 Design Loads and Casing Selection ..133
 5.1 Introduction 133
 5.2 Design Factors 134
 5.3 Design Curves for Collapse and Burst 135
 5.4 Preliminary Casing Selection Process 142
 5.4.1 Selection Considerations 142
 5.5 Axial Loads 154
 5.5.1 Axial Load Considerations 154
 5.5.2 Types of Axial Loads 156
 5.6 Collapse with Combined Loads 161
 5.6.1 Combined Loads 161
 5.6.2 Simplified Method 162
 5.6.3 Better Simplified Method 165
 5.6.4 Historical API Method 167
 5.6.5 New Combined Loads Formula 172
 5.7 Additional Consideration—Cost 176
 5.8 Closure 176
 5.9 References 177

6 Running Casing ..183
 6.1 Introduction 183
 6.2 Transport and Handling 183
 6.2.1 Transport to Location 183
 6.2.2 On Location 183
 6.3 Pipe Measurements 185
 6.4 Crossover Joints and Subs 185
 6.5 Running the Casing 186
 6.5.1 Getting the Casing to the Rig Floor 187
 6.5.2 Stabbing 187
 6.5.3 Filling the Casing 187
 6.5.4 Makeup Torque 188
 6.5.5 Thread Locking 188
 6.5.6 Casing Handling Tools 190
 6.5.7 Running Casing in the Hole 192
 6.5.8 Highly Deviated Wells 193
6.6 Landing Practices 194
 6.6.1 Common Landing Practices 194
 6.6.2 Maximum Hanging Weight 196
6.7 Closure 199

7 Beyond Basic Casing Design ...201
7.1 Introduction 201
7.2 Structural Design 202
 7.2.1 Deterministic and Probabilistic Design 202
 7.2.2 Design Limits 203
 7.2.3 Design Comments 203
7.3 Mechanics of Solids 204
 7.3.1 Index Notation 205
 7.3.2 Coordinate Systems 211
 7.3.3 The Continuum 215
 7.3.4 Sign Convention 230
7.4 Material Behavior 230
 7.4.1 Elasticity 233
 7.4.2 Plasticity 235
7.5 Yield Criteria 244
7.6 Mechanics of Tubes 253
7.7 Closure 258
7.8 References 259

8 Casing Design Performance ...261
8.1 Introduction 261
8.2 Tensile Design Strength 262
8.3 Burst Design Strength 263
8.4 Collapse Design Strength 269
8.5 Combined Loads 279
 8.5.1 A Yield-Based Approach 279
 8.5.2 Current API-Based Approach to Combined Loading 283
 8.5.3 Proposed API/ISO-Based Approach 287
8.6 Lateral Buckling 290
 8.6.1 Stability 290
 8.6.2 Lateral Buckling of Casing 299
8.7 Thermal Effects 302
 8.7.1 Temperature and Material Properties 302
 8.7.2 Temperature Changes 302
8.8 Closure 309
8.9 References 309
9 Casing in Directional and Horizontal Wells

9.1 Introduction 313
9.2 Bore-Hole Friction 314
 9.2.1 The Amonton-Coulomb Friction Relationship 314
 9.2.2 Calculating Bore-Hole Friction 322
9.3 Curvature and Bending 329
 9.3.1 Simple Bending 331
 9.3.2 Effect of Couplings on Bending Stress 334
 9.3.3 Effects of Bending on Coupling Performance 346
9.4 Combined Loading in Curved Well Bores 348
9.5 Closure 352
9.6 References 353

10 Special Topics

10.1 Introduction 355
10.2 Casing Wear 355
10.3 Expandable Casing 360
 10.3.1 Expandable Pipe 361
 10.3.2 Expansion Process 361
 10.3.3 Well Applications 363
 10.3.4 Collapse Considerations 364
10.4 Drilling with Casing and Liners 365
 10.4.1 Drilling Methods with Casing 367
 10.4.2 Casing as a Drill String 368
 10.4.3 Casing Wear and Fatigue 371
 10.4.4 Cementing 371
 10.4.5 Advantages and Questions 372
10.5 Closure 373

Index 375